

000

МОДЕЛЬ RBSComputers Allwinner A20

Сайт разработчика rainbowsoft.ru

Сайт проекта <u>rbs-computers.ru</u>

Подготовка к работе

Установка операционной системы

Мини ПК RBS работает под управлением операционных систем на ядре Linux.

Операционная система находится на SD-карте.

SD-карта может быть объемом от 2Гб для серверной версии и от 4 Гб для десктоп версии и классом скорости от 4. Оптимальный вариант 8,16 Гб класс 10, еще лучше - A1, A2, класс UHS U1, U3/ Среди брендов отдавайте предпочтение Samsung, SanDisk, Toshiba, Transcend.

MicroSD карта памяти

Запись образа на карту памяти

Для работы предоставляется образ с установленной операционной системой. Для записи образа на карту памяти, скачайте и установите утилиту <u>Ether</u>. Вставьте карту памяти в устройство для чтения/записи. Запустите утилиту Etcher и выберите нужный образ в разделе **"Select Image"**.

Убедитесь, что выбран правильный диск. Если устройство нужно изменить, нажмите кнопку "Change"

😵 Etcher			x
+ -	Mass Storage Device USB Device (F:1)	•	o
PDS miniD tu 10 ima	Mass Stor, SP Device		
838.86 MB	Change	Flash!	
Change			
			_
(balena Etcher is an open source project by	i balena	.9

Для начала записи нажмите кнопку "Flash". После завершения установите карту памяти в соответствующий разъем на печатной плате мини ПК.

Подключите необходимые устройства - монитор, клавиатуру, мышь. Последним подключайте блок питания. После подключения блока питания устройство включится. После завершения работы вновь включить устройство можно кнопкой, для этого удерживайте кнопку включения около 2х секунд.

Если блока питания нет в комплекте, то блок питания должен соответствовать следующим характеристикам: Напряжение 5V ток не менее 2А разъем 5,5*2,1 мм.

По завершению загрузки ОС введите логин и пароль

(первая загрузка системы займет больше времени, мигание зеленого светодиода говорит о активности CPU, без паники!)

Логин / пароль по умолчанию:

root / rbs //Суперпользователь, полные права. user / rbs //Пользователь с ограниченными правами.

Теперь нужно увеличить свободное место файловой системы на весь диск, откройте консоль и выполните команды:

(Пример для флешки на 4Гб) parted //посмотрели размер диска Disk /dev/mmcblk0 (parted) p (parted) resizepart 1 // изменим размер первой партиции (parted) xxxxXX // указали нужный размер (parted) p //убедились в изменениях (parted) q resize2fs /dev/mmcblk0p1 // resize2fs /dev/mmcblk2p1 для второй версии мини ПК проверяем: df -h Filesystem Size Used Avail Use% Mounted on /dev/root 3,7G 551M 3,0G 16% /

Удаленная работа с мини ПК по локальной сети

При наличии настроенной локальной сети работать с мини пк возможно удаленно с помощью SSH клиента. SSH (англ. Secure SHell — защищенная оболочка) — сетевой протокол прикладного уровня, предназначенный для безопасного удаленного доступа к UNIX-системам. Скачайте и установите SSH клиент <u>PuTTY</u>

Узнайте сетевой адрес вашего устройства с помощью команды: *ip a* Установите на мини ПК сервер SSH с помощью команды: *apt install ssh* Откройте SSH клиент на машине с которой вы будете управлять мини ПК, введите адрес в соответствующее поле. После нажмите "open" при первом подключении к серверу, ssh вас спрашивает, доверяете ли вы ключу. Отвечаем согласием.

Basic options for your Pu	TTY session
Specify the destination you want to	connect to
Host Name (or IP address)	Port
192.168.77.177	22
Connection type: Raw Telnet Rlogin	SSH Serial
Load, save or delete a stored sessi Saved Sessions	on
Default Settings	Load Save Delete
Close window on exit: ○ Always ○ Never ◎ Or	nly on clean exit
	Host Name (or IP address) 192.168.77.177 Connection type: Raw Telnet Rlogin Load, save or delete a stored sessi Saved Sessions Default Settings Close window on exit: Always Never Or

Изменение разрешения

Для мониторов с HDMI разъемом оптимальное разрешение определяется автоматически. Для мониторов подключенных к VGA разъему оптимальное разрешение указывается следующим образом:

Для изменения разрешения необходимо:

Подключиться к мини ПК через Serial порт.

Включить мини ПК, и в этот же момент многократно нажимать на клавиатуре любой символ, при этом будет остановлен процесс загрузки.

P COM12 - PuTTY
U-Boot 2018.11-rc3 (Jan 11 2019 - 19:11:38 +0400) Allwinner Technology
CPU: Allwinner A20 (SUN7I)
Model: RBS-A20
I2C: ready
DRAM: 1 GiB
MMC: SUNXI SD/MMC: 0
Loading Environment from MMC OK
Setting up a 1360x768 vga console (overscan 0x0)
In: serial
Out: vga
Err: vga
SCSI: AHCI PHY power up failed.
Net: eth-1: ethernet@1c50000
starting USB
USBO: USB EHCI 1.00
USB1: USB OHCI 1.0
USB2: USB EHCI 1.00
USB3: USB OHCI 1.0
scanning bus 0 for devices 1 USB Device(s) found
scanning bus 2 for devices 1 USB Device(s) found
scanning usb for storage devices 0 Storage Device(s) found
Hit any key to stop autoboot: 0
=>

Далее поочередно набираем или копируем из инструкции строки с командами:

setenv video-mode sunxi:1360x768-24@60,monitor=vga,edid=1 (1360x768 нужное нам разрешение) saveenv

reset

Произойдет перезагрузка, загрузится мини ПК теперь с новым разрешением - 1360х768

Работа с портами ввода вывода

				1	
	3.3V VDC	1	00	2	5V VDC
	TWI2-SDA	3	\odot \bigcirc	4	5V VDC
NOTARAZ	TWI2-SCL	5	\odot O	6	GND
	PWM1	7	\odot	8	UART3-TX
	GND	9	0 0	10	UART3-RX
	UART2-RX	11	\odot	12	GPIO-226
	UART2-TX	13	\odot O	14	GND
	UART2-CTS	15	\odot	16	CAN-TX
	3.3V VDC	17	\bigcirc	18	CAN-RX
	SPI-MOSI	19	\odot O	20	GND
	SPI-MISO	21	\odot	22	UART2-RTS
	SPI-CLK	23	\odot	24	SPI-CS0
	GND	25	0 0	26	SPI-CS1
				1	

Распиновка разъема

Распиновка и внешний вид на печатной плате

Вывод питание 3.3V	1	2	Вывод питание 5V
TWI (I2C) - SDA линия данных	3	4	Вывод питание 5V
TWI (I2C) - SCL линия тактовая	5	6	Общая шина (земля)
PWM - ШИМ	7	8	UART3-TX Последовательный порт прием
Общая шина (земля)	9	10	UART3-RX Последовательный порт передача
UART2-RX Последовательный порт прием	11	12	GPIO-226 Интерфейс ввода/вывода
UART2-TX Последовательный порт передача	13	14	Общая шина (земля)
UART2-CTS Готовность к передаче	15	16	CAN-TX Передача
Вывод питание 3.3V	17	18	CAN-RX Прием
SPI-MOSI выход ведущего, вход ведомого	19	20	Общая шина (земля)
SPI-MISO вход ведущего, выход ведомого	21	22	UART2-RTS Запрос на передачу
SPI-CLK тактовый сигнал	23	24	SPI-CS0 выбор ведомого 0
Общая шина (земля)	25	26	SPI-CS1 выбор ведомого 1

Имеющиеся интерфейсы

GPIO - Интерфейс ввода/вывода общего назначения (англ. general-purpose input/output, GPIO) — интерфейс для связи между компонентами компьютерной системы, к примеру микропроцессором и различными периферийными устройствами. Контакты GPIO могут выступать как в роли входа, так и в роли выхода — это, как правило, конфигурируется. GPIO контакты часто группируются в порты.

SPI - (англ. Serial Peripheral Interface, SPI bus — последовательный периферийный интерфейс, шина SPI) — последовательный синхронный стандарт передачи данных в режиме полного <u>дуплекса</u>, предназначенный для обеспечения простого и недорогого высокоскоростного сопряжения микроконтроллеров и периферии. SPI также иногда называют четырёхпроводным (англ. *four-wire*) интерфейсом.

В отличие от стандартного последовательного порта (англ. *standard serial port*), SPI является синхронным интерфейсом, в котором любая передача синхронизирована с общим тактовым сигналом, генерируемым ведущим устройством (процессором). Принимающая (ведомая) периферия синхронизирует получение битовой последовательности с тактовым сигналом. К одному последовательному периферийному интерфейсу ведущего устройства-микросхемы может присоединяться несколько микросхем. Ведущее устройство выбирает ведомое для передачи, активируя сигнал «выбор кристалла» (англ. *chip select*) на ведомой микросхеме. Периферия, не выбранная процессором, не принимает участия в передаче по SPI.

В SPI используются четыре цифровых сигнала:

- MOSI выход ведущего, вход ведомого (англ. *Master Out Slave In*). Служит для передачи данных от ведущего устройства ведомому.
- MISO вход ведущего, выход ведомого (англ. *Master In Slave Out*). Служит для передачи данных от ведомого устройства ведущему.
- SCLK или SCK последовательный тактовый сигнал (англ. Serial Clock). Служит для передачи тактового сигнала для ведомых устройств.
- CS или SS выбор микросхемы, выбор ведомого (англ. Chip Select, Slave Select).

I2C - I²C (IIC, англ. *Inter-Integrated Circuit*) — последовательная асимметричная шина для связи между интегральными схемами внутри электронных приборов. Использует две двунаправленные линии связи (SDA и SCL), применяется для соединения низкоскоростных периферийных компонентов с процессорами и микроконтроллерами (например, на материнских платах, во встраиваемых системах, в мобильных телефонах).

РWM - Широтно-импульсная модуляция (ШИМ, англ. *pulse-width modulation (PWM)*) — процесс управления мощностью, подводимой к нагрузке, путём изменения скважности импульсов.

UART - Универсальный асинхронный приёмопередатчик (УАПП, англ. Universal Asynchronous Receiver-Transmitter, UART) — узел вычислительных устройств, предназначенный для организации связи с другими цифровыми устройствами. Преобразует передаваемые данные в последовательный вид так, чтобы было возможно передать их по одной физической цифровой линии другому аналогичному устройству. Метод преобразования хорошо стандартизован и широко применяется в компьютерной технике (особенно во встраиваемых устройствах и системах на кристалле (SoC)).

CAN - (англ. *Controller Area Network* — сеть контроллеров) — стандарт промышленной сети, ориентированный, прежде всего, на объединение в единую сеть различных исполнительных устройств и датчиков. Режим передачи — последовательный, широковещательный, пакетный.

CAN разработан компанией Robert Bosch GmbH в середине 1980-х и в настоящее время широко распространён в промышленной автоматизации, технологиях «умного дома», автомобильной промышленности и многих других областях. Стандарт для автомобильной автоматики.

Руководство по использованию

Ограничение при работе с портами

Защита от превышения напряжения и тока отсутствует! Ток нагрузки не более - 20mA (Подключение к примеру светодиода без токоограничивающего сопротивления повредит соответствующий вывод!) Сопротивление токоограничивающего резистора от 150 Ом! Напряжение логического уровня 1 - 3.3В Максимальная нагрузка на линии 5В

Максимальная нагрузка на линии 3.3В

			1	
3.3V VDC	1	00	2	5V VDC
TWI2-SDA	3	\odot \bigcirc	4	5V VDC
TWI2-SCL	5	\odot O	6	GND
PWM1	7	\odot	8	UART3-TX
GND	9	0 0	10	UART3-RX
UART2-RX	11	\odot	12	GPIO-226
UART2-TX	13	\odot O	14	GND
UART2-CTS	15	\odot	16	CAN-TX
3.3V VDC	17	\bigcirc	18	CAN-RX
SPI-MOSI	19	\odot O	20	GND
SPI-MISO	21	\odot	22	UART2-RTS
SPI-CLK	23	\odot	24	SPI-CS0
GND	25	0 0	26	SPI-CS1

Линии питания

5V Pins 2, 4 3.3V Pins 1, 17 Общая шина (GND) Pins 9, 25, 20, 14, 6

Работа с GPIO

(gpio-112 port PD16 - занят, управляет светодиодом на плате в качестве индикатора активности CPU) gpio-226 Pin 12 (port PH02)

Получить список всех портов доступных в системе, обозначенных в дереве устройств: *cat /sys/kernel/debug/pinctrl/1c20800.pinctrl/pinmux-pins* |*grep P*

Литература: https://elinux.org/images/7/74/Elce2017_new_GPIO_interface.pdf https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/gpio/sysfs.txt хороший пример http://www.customelectronics.ru/rabota-s-portami-gpio-cubieboard/ Пример работы на питоне http://docs.cubieboard.org/tutorials/common/using_python_program_control_gpios

Работа с использованием sysfs

//Is -L /sys/class/gpio/

Для наглядности подключим светодиод.

Пример работы в командной строке:

echo 226 > /sys/class/gpio/export

Использование как выход echo out > /sys/class/gpio/gpio226/direction Зажечь светодиод echo 1 > /sys/class/gpio/gpio226/value Погасить светодиод echo 0 > /sys/class/gpio/gpio226/value убрать порт из системы echo 226 > unexport

Работа с использованием uapi Libgpiod

<u>Libgpiod</u> (Lib окон- чательно G бщая P ЗАДАЧА I Nput / O utput d evice) обеспечивает как API вызовы для использования в ваших собственных программах и следующие шесть приложений пользовательского режима для манипулирования GPIO линии:

- **gpiodetect** перечисляет все присутствующие в системе gpiochips, их имена, метки и количество линий GPIO
- **gpioinfo** перечисляет все строки указанных gpiochips, их имена, потребителей, направление, активное состояние и дополнительные флаги
- gpioget читает значения указанных строк GPIO
- **gpioset** устанавливает значения указанных линий GPIO, потенциально сохраняет экспортные линии и ожидает ожидания, ввода пользователя или сигнала
- gpiofind находит имя gpiochip и смещение строки по имени строки
- gpiomon дождаться событий на линиях GPIO, указать, какие события нужно просмотреть, сколько событий нужно обработать перед выходом или нужно ли сообщать о событиях на консоль

Установка инструмента Libgpiod

apt-get install libudev-dev autoconf-archive libtool // https://github.com/brgl/libgpiod wget <u>https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/snapshot/libgpiod-1.1.2.tar.gz</u> tar -xzf libgpiod-1.1.2.tar.gz cd libgpiod-1.1.2/ mkdir -p m4 ./autogen.sh --enable-tools=yes --host=arm-linux-gnueabi make make install ldconfig Пример: gpioset gpiochip0 226=1 //светодиод загорится gpioset gpiochip0 226=0 //

Литература: https://github.com/brgl/libgpiod https://habr.com/ru/post/351512/ https://www.acmesystems.it/libgpiod Информация Is -I /dev/gpi* gpiodetect gpioinfo 1c20800.pinctrl

UART

UART0

Этот последовательный порт именуемый в системе как ttyS0 используется для отладки, с его помощью другой компьютер может подключиться к устройству. Это позволит увидеть логи загрузки операционной системы, войти в систему и управлять с помощью команд командной строки Linux, также настроить загрузчик.

Чтобы подключиться необходим последовательный порт с соответствующими логическими уровнями 3.3V. Обычный RS232 (COM Port) который присутствует почти на каждом ПК не подойдет, так как имеет уровни логических напряжений до +/-15v. Для этого понадобится либо преобразователь уровней (к примеру на специализированной микросхеме MAX232). Удобней всего воспользоваться готовым usb serial converter см. рис.

Расположение UART0 (ttyS0)

Распиновка USB-serial шнурка:

Черный провод - GND Зеленый провод - TX Белый провод - RX Красный провод - VCC (5V) (не используется)

Для работы понадобится клиентская программа для работы с терминалом. Если вы работаете под управлением OC Windows, начиная с версии 7 исключена стандартная программа hyperterminal ,по этому требуется установить альтернативный клиент, например <u>PuTTY</u>.

Запустите PuTTY и укажите скорость (по умолчанию 115200) и номер COM порта (в OC Windows можно узнать в диспетчере устройств)

usb serial converter

PuTTY Configuration		×
Category: Session Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Colours Connection Proxy Telnet Rlogin SSH Serial	Basic options for your PuTT Specify the destination you want to conserve the second	rY session onnect to Speed 115200 SSH Serial Load Save Delete
About	Open	<u>C</u> ancel

Наименование портов, назначение пинов:

```
UART2 (ttyS1)
uart_tx = Pin 13 (port PI18)
uart_rx = Pin 11 (port PI19)
uart_rts = Pin 22 (port PI16)
uart_cts = Pin 15 (port PI17)
```

UART3 (ttyS2) uart_tx = Pin 8 (port PH00) uart_rx = Pin 10 (port PH01)

			1	
3.3V VDC	1	00	2	5V VDC
TWI2-SDA	3	\odot \bigcirc	4	5V VDC
TWI2-SCL	5	\odot O	6	GND
PWM1	7	\odot	8	UART3-TX
GND	9	0 0	10	UART3-RX
UART2-RX	11	\odot	12	GPIO-226
UART2-TX	13	\odot O	14	GND
UART2-CTS	15	\odot	16	CAN-TX
3.3V VDC	17	\bigcirc	18	CAN-RX
SPI-MOSI	19	\odot O	20	GND
SPI-MISO	21	\odot	22	UART2-RTS
SPI-CLK	23	\odot	24	SPI-CS0
GND	25	0 0	26	SPI-CS1

В операционной системе Linux последовательные порты называется ttyS Примечание:

Последовательный порт процессора uart 2 в системе именуется ttyS1 uart 3 именуется ttyS2

"tty" - сокращение от "телетайп", "S" означает последовательный порт.

dmesg | *grep tty* ttyS0 - консоль

Подключение GPS модуля

Нужно установить демон:

Преобразует NMEA-поток в удобный формат и раздает клиентским программам по TCP/IP sudo apt-get install gpsd настройка: nano /etc/default/gpsd # Default settings for the gpsd init script and the hotplug wrapper. # Start the gpsd daemon automatically at boot time START_DAEMON="true" # Use USB hotplugging to add new USB devices automatically to the daemon USBAUTO="true" # Devices gpsd should collect to at boot time. # They need to be read/writeable, either by user gpsd or the group dialout. DEVICES="/dev/ttyS1" # Other options you want to pass to gpsd GPSD_OPTIONS="-n"

//gpsd -b -N /dev/ttyS1 //gpsd /dev/ttyS1 проверка: gpsmon или так gpscat -s 9600 /dev/ttyS1 появятся строчки с сообщениями от GSM модуля. //карта, навигация аpt-get install foxtrotgps

		SPI		
3.3V VDC	1	00	2	5V VDC
TWI2-SDA	3	\odot O	4	5V VDC
TWI2-SCL	5	\odot O	6	GND
PWM1	7	\odot	8	UART3-TX
GND	9	0 0	10	UART3-RX
UART2-RX	11	\odot	12	GPIO-226
UART2-TX	13	\odot O	14	GND
UART2-CTS	15	\odot	16	CAN-TX
3.3V VDC	17	\bigcirc	18	CAN-RX
SPI-MOSI	19	\odot O	20	GND
SPI-MISO	21	\odot	22	UART2-RTS
SPI-CLK	23	\odot	24	SPI-CS0
GND	25	0 0	26	SPI-CS1

Наименование портов, назначение пинов: SPI0 cs0 = port PI10 cs1 = port PI14 sclk = port PI11 mosi = port PI12 miso = port PI13

Проверка наличия в системе: *ls /dev/spi** /dev/spidev0.0

Ismod | grep -i spi spidev 16384 0

*Is -I /dev/spi** crw------ 1 root root 153, 0 янв 28 2018 /dev/spidev0.0 Подключение модуля светодиодной матрицы 8х8 на микросхеме МАХ7219

Установка ПО: apt-get install build-essential apt-get install git apt-get install python-dev python-pip libfreetype6-dev libjpeg-dev sudo apt-get install python3-pip

(pip - это система управления пакетами, которая используется для установки и управления программными пакетами, написанными на Python) //pip --version //pip 9.0.1 from /usr/lib/python2.7/dist-packages (python 2.7) //sudo -H pip install --upgrade luma.led_matrix sudo -H pip3 install --upgrade luma.led_matrix git clone https://github.com/rm-hull/max7219.git cd max7219/

запуск теста //python examples/matrix_demo.py python3 examples/matrix_demo.py Литература: http://raspi.tv/2013/8-x-8-led-array-driven-by-max7219-on-the-raspberry-pi-via-python https://luma-led-matrix.readthedocs.io/en/latest/install.html#installing-from-pypi

Наименование портов, назначение пинов:

can

can_tx Pin 16 (port PH20) can_rx Pin 18 (port PH21)

В списке сетевых устройств можем увидеть наш сетевой интерфейс CAN:

ip a

3: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10 link/can

		I2C		
3.3V VDC	1	00	2	5V VDC
TWI2-SDA	3	\odot O	4	5V VDC
TWI2-SCL	5	\odot O	6	GND
PWM1	7	\odot	8	UART3-TX
GND	9	0 0	10	UART3-RX
UART2-RX	11	\odot	12	GPIO-226
UART2-TX	13	\odot O	14	GND
UART2-CTS	15	\odot	16	CAN-TX
3.3V VDC	17	\bigcirc	18	CAN-RX
SPI-MOSI	19	\odot O	20	GND
SPI-MISO	21	\odot	22	UART2-RTS
SPI-CLK	23	\odot	24	SPI-CS0
GND	25	0 0	26	SPI-CS1

Наименование портов, назначение пинов: twi2 (I2C) twi2_sda Pin 3 (port PB21) twi2_scl Pin 5 (port PB20)

Список доступных портов в системе: *ls /dev/i2c** /dev/i2c-0 /dev/i2c-1

Подключение OLED 1.3 дисплея с интерфейсом I2C

apt-get install i2c-tools libi2c-dev i2cdetect -l i2c-1 i2c mv64xxx i2c adapte

i2c-1	i2c	mv64xxx_i2c adapter	I2C adapter
i2c-0	i2c	mv64xxx_i2c adapter	I2C adapter

Просмотр наличия устройств на шине:

i2cdetect -y 1

в таблице есть устройство которое отвечает по адресу 3с это наш экран

Установим python apt-get install python-pip python-dev build-essential apt-get install python-setuptools //для Python3, используйте easy_install3 и sudo apt-get install python3-setuptools //sudo easy_install3 pip

//sudo apt install python3-pip

pip install --upgrade pip //pip --version //pip 9.0.1 from /usr/lib/python2.7/dist-packages (python 2.7) //pip3 install --upgrade pip //если установленно 2 питона и нужный сам не обновляется //apt-get install python3-dev python3-pip

//sudo easy_install pip // ? запустить easy_install с помощью полного пути: python /usr/lib/python2.7/dist-packages/easy_install.py pip

pip install requests //pip3 install requests //https://luma-oled.readthedocs.io/en/develop/install.html Пример: Luma.Examples /// sudo usermod -a -G i2c,spi,gpio pi *sudo apt install python-dev python-pip libfreetype6-dev libjpeg-dev build-essential sudo apt install libsdl-dev libportmidi-dev libsdl-ttf2.0-dev libsdl-mixer1.2-dev libsdl-image1.2-dev*

git clone https://github.com/rm-hull/luma.examples.git cd luma.examples python3 -m pip install --upgrade pip //понадобилось обновить sudo -H pip install -e . //точка в конце строки нужна!!!

Можно запустить пример: python examples/clock.py --i2c-port 1 --width 128 --height 64 --display sh1106 //python3 examples/clock.py --i2c-port 1 --width 128 --height 64 --display sh1106 Подключение датчика окружающей среды ВМЕ280 с интерфейсом I2С

ВМЕ280 — датчик давления, температуры и влажности.

Это означает что на шине есть устройство с адресом 76.

Пример на языке python

Скачаем и запустим исходный код примера работы с датчиком

wget -O bme280.py http://bit.ly/bme280py или wget <u>https://bitbucket.org/MattHawkinsUK/rpispy-misc/raw/master/python/bme280.py</u> Запуск: python bme280.py

Chip ID : 96 Version : 0 Temperature : 24.7 C Pressure : 997.30178992 hPa Humidity : 23.3212514326 % Подключение 3-х осевой гироскоп и акселерометр MPU 6050 с интерфейсом I2C

Подключаем модуль и проверяем что он на шине. *i2cdetect -у 1*

Обнаружили датчик по адресу 68.

Пример на языке python

Создадим пустой файл

nano gyro.py

Вставим код

#!/usr/bin/python import smbus import math

Register power_mgmt_1 = 0x6b power_mgmt_2 = 0x6c

def read_byte(reg):
 return bus.read_byte_data(address, reg)

```
def read_word(reg):
  h = bus.read_byte_data(address, reg)
  I = bus.read_byte_data(address, reg+1)
  value = (h << 8) + l
  return value
def read_word_2c(reg):
  val = read_word(reg)
  if (val >= 0x8000):
    return -((65535 - val) + 1)
  else:
    return val
def dist(a,b):
  return math.sqrt((a*a)+(b*b))
def get_y_rotation(x,y,z):
  radians = math.atan2(x, dist(y,z))
  return -math.degrees(radians)
def get x rotation(x,y,z):
  radians = math.atan2(y, dist(x,z))
  return math.degrees(radians)
bus = smbus.SMBus(1) # bus = smbus.SMBus(0) fuer Revision 1
address = 0x68
                   # via i2cdetect
# Aktivieren, um das Modul ansprechen zu koennen
bus.write_byte_data(address, power_mgmt_1, 0)
print "Gyroskop"
print "-----"
gyroskop xout = read word 2c(0x43)
gyroskop yout = read word 2c(0x45)
gyroskop_zout = read_word_2c(0x47)
print "gyroskop_xout: ", ("%5d" % gyroskop_xout), " skaliert: ", (gyroskop_xout / 131)
print "gyroskop_yout: ", ("%5d" % gyroskop_yout), " skaliert: ", (gyroskop_yout / 131)
print "gyroskop_zout: ", ("%5d" % gyroskop_zout), " skaliert: ", (gyroskop_zout / 131)
print
print "Beschleunigungssensor"
print "-----"
beschleunigung_xout = read_word_2c(0x3b)
beschleunigung_yout = read_word_2c(0x3d)
beschleunigung_zout = read_word_2c(0x3f)
beschleunigung_xout_skaliert = beschleunigung_xout / 16384.0
beschleunigung yout skaliert = beschleunigung yout / 16384.0
beschleunigung_zout_skaliert = beschleunigung_zout / 16384.0
print "beschleunigung_xout: ", ("%6d" % beschleunigung_xout), " skaliert: ", beschleunigung_xout_skaliert
print "beschleunigung_yout: ", ("%6d" % beschleunigung_yout), " skaliert: ", beschleunigung_yout_skaliert
print "beschleunigung_zout: ", ("%6d" % beschleunigung_zout), " skaliert: ", beschleunigung_zout_skaliert
```

print "X Rotation: ", get_x_rotation(beschleunigung_xout_skaliert, beschleunigung_yout_skaliert, beschleunigung_zout_skaliert) print "Y Rotation: ", get_y_rotation(beschleunigung_xout_skaliert, beschleunigung_yout_skaliert, beschleunigung_zout_skaliert)

Запустить python gyro.py

gyroskop_xout: -774 skaliert: -6 gyroskop_yout: 235 skaliert: 1 gyroskop_zout: 15 skaliert: 0

Beschleunigungssensor

beschleunigung_xout: -4088 skaliert: -0.24951171875 beschleunigung_yout: -3920 skaliert: -0.2392578125 beschleunigung_zout: 16932 skaliert: 1.03344726562 X Rotation: -12.6830009973 Y Rotation: 13.2362235306

			1	
3.3V VDC	1	00	2	5V VDC
TWI2-SDA	3	\odot \bigcirc	4	5V VDC
TWI2-SCL	5	\odot O	6	GND
PWM1	7	\odot	8	UART3-TX
GND	9	0 0	10	UART3-RX
UART2-RX	11	\odot	12	GPIO-226
UART2-TX	13	\odot O	14	GND
UART2-CTS	15	\odot	16	CAN-TX
3.3V VDC	17	\bigcirc	18	CAN-RX
SPI-MOSI	19	\odot O	20	GND
SPI-MISO	21	\odot	22	UART2-RTS
SPI-CLK	23	\odot	24	
GND	25	0 0	26	SPI-CS1

PWM

Наименование порта, назначение пинов: pwm - port PI03 узнать наличие в системе: *Is /sys/class/pwm** pwmchip0

Управляем светодиодом средством PWM

Пример управления светодиодом из консоли:

Экспорт канала ШИМ для управления пользователем.

cd /sys/class/pwm/pwmchip0/ //echo 0 > export //y нас paзведен PWM на порте процессора pwm1 и ему соответствует номер в дереве устройств 1 echo 1 > export Bыберите период сигнала ШИМ. Значение в наносекундах. echo 10000000 > pwm1/period Bыберите рабочий цикл. Значение указывается в наносекундах и должно быть меньше периода. echo 5000000 > pwm1/duty_cycle Bключить / отключить сигнал ШИМ. echo 1 > pwm1/enable Bозможные значения:

- 1: включить
- 0: отключить

Измените полярность сигнала ШИМ. Полярность может быть изменена, только если ШИМ не включен.

echo "normal" > pwm1/polarity

Возможные значения:

- normal
- inversed

Для примера по мигаем светодиодом

cd /sys/class/pwm/pwmchip0/

echo 1 > export

echo 100000000 > pwm1/period

echo 30000000 > pwm1/duty_cycle

echo 1 > pwm1/enable

IR Приемник

pin 36 (PB4): 1c21800.ir (GPIO UNCLAIMED) function ir0 group PB4